Uncovering anisotropic magnetic phases via fast dimensionality analysis

Research output: Contribution to journalArticlepeer-review


A quantitative geometric predictor for the dimensionality of magnetic interactions is presented. This predictor is based on networks of superexchange interactions and can be quickly calculated for crystalline compounds of arbitrary chemistry, occupancy, or symmetry. The resulting data are useful for classifying structural families of magnetic compounds. We have examined compounds from a demonstration set of 42 520 materials with 3d transition metal cations. The predictor reveals trends in magnetic interactions that are often not apparent from the space group of the compounds, such as triclinic or monoclinic compounds that are strongly 2D. We present specific cases where the predictor identifies compounds that should exhibit competition between 1D and 2D interactions, and how the predictor can be used to identify sparsely populated regions of chemical space with as-yet-unexplored topologies of specific 3d magnetic cations. The predictor can be accessed for the full list of compounds using a searchable front end and further information on the connectivity, symmetry, valence, and cation-anion and cation-cation coordination can be freely exported.

Original languageEnglish (US)
Article number094403
Number of pages8
JournalPhysical Review Materials
Issue number9
Early online dateMay 23 2018
StatePublished - Sep 4 2018

ASJC Scopus subject areas

  • General Materials Science
  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Uncovering anisotropic magnetic phases via fast dimensionality analysis'. Together they form a unique fingerprint.

Cite this