Unconditional UC-secure computation with (Stronger-malicious) PUFs

Saikrishna Badrinarayanan, Dakshita Khurana, Rafail Ostrovsky, Ivan Visconti

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Brzuska et. al. (Crypto 2011) proved that unconditional UCsecure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs). Dachman-Soled et. al. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs, assuming such PUFs are stateless. They also showed that unconditional oblivious transfer is impossible against an adversary that creates malicious stateful PUFs. – In this work, we go beyond this seemingly tight result, by allowing any adversary to create stateful PUFs with a-priori bounded state. This relaxes the restriction on the power of the adversary (limited to stateless PUFs in previous feasibility results), therefore achieving improved security guarantees. This is also motivated by practical scenarios, where the size of a physical object may be used to compute an upper bound on the size of its memory. – As a second contribution, we introduce a new model where any adversary is allowed to generate a malicious PUF that may encapsulate other (honestly generated) PUFs within it, such that the outer PUF has oracle access to all the inner PUFs. This is again a natural scenario, and in fact, similar adversaries have been studied in the tamper-proof hardware-token model (e.g., Chandran et. al. (Eurocrypt 2008)), but no such notion has ever been considered with respect to PUFs. All previous constructions of UC secure protocols suffer from explicit attacks in this stronger model. In a direct improvement over previous results, we construct UC protocols with unconditional security in both these models.

Original languageEnglish (US)
Title of host publicationAdvances in Cryptology – EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
EditorsJesper Buus Nielsen, Jean-Sebastien Coron
PublisherSpringer
Pages382-411
Number of pages30
ISBN (Print)9783319566191
DOIs
StatePublished - 2017
Externally publishedYes
Event36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2017 - Paris, France
Duration: Apr 30 2017May 4 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10210 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2017
Country/TerritoryFrance
City Paris
Period4/30/175/4/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Unconditional UC-secure computation with (Stronger-malicious) PUFs'. Together they form a unique fingerprint.

Cite this