TY - GEN
T1 - Ultrasound tomography calibration using structured matrix completion
AU - Karbasi, Amin
AU - Oh, Sewoong
AU - Parhizkar, Reza
AU - Vetterli, Martin
PY - 2010
Y1 - 2010
N2 - Calibration of ultrasound tomography devices is a challenging problem and of highly practical interest in medical and seismic imaging. This work addresses the position calibration problem in circular apertures where sensors are arranged on a circular ring and act both as transmitters and receivers.We introduce a new method of calibration based on the timeof-flight (ToF) measurements between sensors when the enclosed medium is homogeneous. Knowing all the pairwise ToFs, one can find the positions of the sensors using multi-dimensional scaling (MDS) method. In practice, however, we are facing two major sources of loss. One is due to the transitional behaviour of the sensors, which makes the ToF measurements for close-by sensors unavailable. The other is due to the random malfunctioning of the sensors, that leads to random missing ToF measurements. On top of the missing entries, since in practice the impulse response of the piezoelectric and the time origin in the measurement procedure are not present, a time mismatch is also added to the measurements. In this work, we first show that a matrix defined from all the ToF measurements is of rank at most four. In order to estimate the structured and random missing entries, utilizing the fact that the matrix in question is shown to be low-rank, we apply a state-of-the-art low-rank matrix completion algorithm. Then we use MDS in order to find the correct positions of the sensors. To confirm the functionality of our method in practice, simulations mimicking the measurements of an ultrasound tomography device are performed.
AB - Calibration of ultrasound tomography devices is a challenging problem and of highly practical interest in medical and seismic imaging. This work addresses the position calibration problem in circular apertures where sensors are arranged on a circular ring and act both as transmitters and receivers.We introduce a new method of calibration based on the timeof-flight (ToF) measurements between sensors when the enclosed medium is homogeneous. Knowing all the pairwise ToFs, one can find the positions of the sensors using multi-dimensional scaling (MDS) method. In practice, however, we are facing two major sources of loss. One is due to the transitional behaviour of the sensors, which makes the ToF measurements for close-by sensors unavailable. The other is due to the random malfunctioning of the sensors, that leads to random missing ToF measurements. On top of the missing entries, since in practice the impulse response of the piezoelectric and the time origin in the measurement procedure are not present, a time mismatch is also added to the measurements. In this work, we first show that a matrix defined from all the ToF measurements is of rank at most four. In order to estimate the structured and random missing entries, utilizing the fact that the matrix in question is shown to be low-rank, we apply a state-of-the-art low-rank matrix completion algorithm. Then we use MDS in order to find the correct positions of the sensors. To confirm the functionality of our method in practice, simulations mimicking the measurements of an ultrasound tomography device are performed.
UR - http://www.scopus.com/inward/record.url?scp=84869142328&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869142328&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84869142328
SN - 9781617827457
T3 - 20th International Congress on Acoustics 2010, ICA 2010 - Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society
SP - 4114
EP - 4121
BT - 20th International Congress on Acoustics 2010, ICA 2010 - Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society
T2 - 20th International Congress on Acoustics 2010, ICA 2010 - Incorporating the 2010 Annual Conference of the Australian Acoustical Society
Y2 - 23 August 2010 through 27 August 2010
ER -