Ultrasonic viscoelasticity imaging of nonpalpable breast lesions

Yupeng Qiu, Michael F. Insana

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The prognosis of breast cancer patients improves with early and accurate diagnosis. A small clinical study was conducted with 21 women having a single nonpalpable breast lesion, each detected mammographically with later pathology confirmation. Elasticity images were acquired on each patient to test for the ability to differentiating malignant and benign lesions. The mechanical relaxation time T1 images showed a tissue-specific T1 contrast that is negative for all 11 malignant lesions and positive for all 10 benign lesions. Strain images were estimated using a regularized multi-scale optical flow (ROF) algorithm. Adjustments to the input parameters to the ROF and their subsequent effects on T1 estimation and computation time are shown to have a strong effect of diagnostic performance.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages4424-4427
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
CountryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Ultrasonic viscoelasticity imaging of nonpalpable breast lesions'. Together they form a unique fingerprint.

Cite this