Ultrasensitive detection of hydrogen peroxide using bi2te3electrochemical sensors

Fujia Zhao, Shan Zhou, Yingjie Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

Electrochemical sensors, with high accuracy, good selectivity, and linear response, have been widely used for environmental protection, health monitoring, and disease treatment. However, to date, these sensors still have limit sensitivity or otherwise require the use of high-cost materials such as noble metals and enzymes. Here, we report a novel electrochemical sensor using a topological insulator, Bi2Te3. Through liquid-phase exfoliation, we prepared nano- and microflakes of Bi2Te3 and measured their performance in hydrogen peroxide sensing via electrocatalytic reduction processes. Our devices exhibit a sensitivity of ∼4900 μA mM-1 cm-2 and a detection limit of ∼10-8 molar, both of which are superior to typical noble metal-based electrochemical sensors. Through electrochemical analysis and microkinetic simulations, we extracted the kinetic parameters and gained insights into the reaction mechanism. We attribute the ultrahigh sensitivity to the facile electron transfer at the Bi2Te3-aqueous solution interface.

Original languageEnglish (US)
Pages (from-to)4761-4767
Number of pages7
JournalACS Applied Materials and Interfaces
Volume13
Issue number3
DOIs
StatePublished - Jan 27 2021

Keywords

  • Bismuth telluride
  • Chemical and biosensing
  • Electrochemical sensor
  • Hydrogen peroxide
  • Topological insulator

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Ultrasensitive detection of hydrogen peroxide using bi<sub>2</sub>te<sub>3</sub>electrochemical sensors'. Together they form a unique fingerprint.

Cite this