TY - JOUR
T1 - Ultra-Tuning of nonlinear drumhead MEMS resonators by Electro-Thermoelastic buckling
AU - Kanj, Ali
AU - Ferrari, Paolo
AU - van der Zande, Arend M.
AU - Vakakis, Alexander F.
AU - Tawfick, Sameh
N1 - This work was supported in part by the NSF Emerging Frontiers in Research and Innovation (EFRI) Grant 1741565. P.F. and A.M.v.d.Z acknowledge the support of the NSF-CAREER Award number CMMI-184673.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Nonlinear micro-electro-mechanical systems (MEMS) resonators open new opportunities in sensing and signal manipulation compared to their linear counterparts by enabling frequency tuning and increased bandwidth. Here, we design, fabricate and study drumhead resonators exhibiting strongly nonlinear dynamics and develop a reduced order model (ROM) to capture their response accurately. The resonators undergo electrostatically-mediated thermoelastic buckling, which tunes their natural frequency from 4.7 to 11.3 MHz, a factor of 2.4× tunability. Moreover, the imposed buckling switches the nonlinearity of the resonators between purely stiffening, purely softening, and even softening-to-stiffening. Accessing these exotic dynamics requires precise control of the temperature and the DC electrostatic forces near the resonator's critical-buckling point. To explain the observed tunability, we develop a one-dimensional physics-based ROM that predicts the linear and nonlinear response of the fundamental bending mode of these drumhead resonators. The ROM captures the dynamic effects of the internal stresses resulting from three sources: The residual stresses from the fabrication process, the mismatch in thermal expansion between the constituent layers, and lastly, the applied electrostatic forces. The novel ROM developed in this article not only replicates the observed tunability of linear (within 5.5 % error) and nonlinear responses even near the states of critical buckling but also provides insightful intuition on the interplay among the softening and stiffening, which is invaluable for the precise design of similar devices. This remarkable nonlinear and large tunability of the natural frequency are valuable features for on-chip acoustic devices in broad applications such as signal manipulation, filtering, and MEMS waveguides.
AB - Nonlinear micro-electro-mechanical systems (MEMS) resonators open new opportunities in sensing and signal manipulation compared to their linear counterparts by enabling frequency tuning and increased bandwidth. Here, we design, fabricate and study drumhead resonators exhibiting strongly nonlinear dynamics and develop a reduced order model (ROM) to capture their response accurately. The resonators undergo electrostatically-mediated thermoelastic buckling, which tunes their natural frequency from 4.7 to 11.3 MHz, a factor of 2.4× tunability. Moreover, the imposed buckling switches the nonlinearity of the resonators between purely stiffening, purely softening, and even softening-to-stiffening. Accessing these exotic dynamics requires precise control of the temperature and the DC electrostatic forces near the resonator's critical-buckling point. To explain the observed tunability, we develop a one-dimensional physics-based ROM that predicts the linear and nonlinear response of the fundamental bending mode of these drumhead resonators. The ROM captures the dynamic effects of the internal stresses resulting from three sources: The residual stresses from the fabrication process, the mismatch in thermal expansion between the constituent layers, and lastly, the applied electrostatic forces. The novel ROM developed in this article not only replicates the observed tunability of linear (within 5.5 % error) and nonlinear responses even near the states of critical buckling but also provides insightful intuition on the interplay among the softening and stiffening, which is invaluable for the precise design of similar devices. This remarkable nonlinear and large tunability of the natural frequency are valuable features for on-chip acoustic devices in broad applications such as signal manipulation, filtering, and MEMS waveguides.
UR - http://www.scopus.com/inward/record.url?scp=85152239480&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85152239480&partnerID=8YFLogxK
U2 - 10.1016/j.ymssp.2023.110331
DO - 10.1016/j.ymssp.2023.110331
M3 - Article
AN - SCOPUS:85152239480
SN - 0888-3270
VL - 196
JO - Mechanical Systems and Signal Processing
JF - Mechanical Systems and Signal Processing
M1 - 110331
ER -