TY - JOUR
T1 - Ugly ducklings - The dark side of plastic materials in contact with potable water
AU - Neu, Lisa
AU - Bänziger, Carola
AU - Proctor, Caitlin R.
AU - Zhang, Ya
AU - Liu, Wen Tso
AU - Hammes, Frederik
N1 - Funding Information:
The authors acknowledge conceptual contributions of Maryna Peter and Stefan Kötzsch, technical support from Franziska Rölli and Romina Sigrist, Teresa Colangelo for assistance with SEM imaging, and all children for the generous donation of their beloved bath toys. The research project was funded by the Swiss National Science Foundation (SNSF grant nr. 31003A_163366/1).
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 106 cells/cm2 (clean water controls), 9.5 × 106 cells/cm2 (real bath toys), and 7.3 × 107 cells/cm2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.
AB - Bath toys pose an interesting link between flexible plastic materials, potable water, external microbial and nutrient contamination, and potentially vulnerable end-users. Here, we characterized biofilm communities inside 19 bath toys used under real conditions. In addition, some determinants for biofilm formation were assessed, using six identical bath toys under controlled conditions with either clean water prior to bathing or dirty water after bathing. All examined bath toys revealed notable biofilms on their inner surface, with average total bacterial numbers of 5.5 × 106 cells/cm2 (clean water controls), 9.5 × 106 cells/cm2 (real bath toys), and 7.3 × 107 cells/cm2 (dirty water controls). Bacterial community compositions were diverse, showing many rare taxa in real bath toys and rather distinct communities in control bath toys, with a noticeable difference between clean and dirty water control biofilms. Fungi were identified in 58% of all real bath toys and in all dirty water control toys. Based on the comparison of clean water and dirty water control bath toys, we argue that bath toy biofilms are influenced by (1) the organic carbon leaching from the flexible plastic material, (2) the chemical and biological tap water quality, (3) additional nutrients from care products and human body fluids in the bath water, as well as, (4) additional bacteria from dirt and/or the end-users' microbiome. The present study gives a detailed characterization of bath toy biofilms and a better understanding of determinants for biofilm formation and development in systems comprising plastic materials in contact with potable water.
UR - http://www.scopus.com/inward/record.url?scp=85044591942&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044591942&partnerID=8YFLogxK
U2 - 10.1038/s41522-018-0050-9
DO - 10.1038/s41522-018-0050-9
M3 - Article
C2 - 29619241
AN - SCOPUS:85044591942
SN - 2055-5008
VL - 4
JO - npj Biofilms and Microbiomes
JF - npj Biofilms and Microbiomes
IS - 1
M1 - 7
ER -