Abstract
Studies of human adults, infants, and non-human animals demonstrate that non-symbolic numerical cognition is supported by at least two distinct cognitive systems: a "parallel individuation system" that encodes the numerical identity of individual items and an "approximate number system" that encodes the approximate numerical magnitude, or numerosity, of a set. The exact nature and role of these systems, however, have been debated for over a 100-years. Some argue that the non-symbolic representation of small numbers (<4) is carried out solely by the parallel individuation system and the non-symbolic representation of large numbers (>4) is carried out solely by the approximate number system. Others argue that all numbers are represented by the approximate number system. This debate has been fueled largely by some studies showing dissociations between small and large number processing and other studies showing similar processing of small and large numbers. Recent work has addressed this debate by showing that the two systems are present and distinct from early infancy, persist despite the acquisition of a symbolic number system, activate distinct cortical networks, and engage differentially based attentional constraints. Based on the recent discoveries, I provide a hypothesis that may explain the puzzling findings and makes testable predictions as to when each system will be engaged. In particular, when items are presented under conditions that allow selection of individuals, they will be represented as distinct mental items through parallel individuation and not as a numerical magnitude. In contrast, when items are presented outside attentional limits (e.g., too many, too close together, under high attentional load), they will be represented as a single mental numerical magnitude and not as distinct mental items. These predictions provide a basis on which researchers can further investigate the role of each system in the development of uniquely human numerical thought.
Original language | English (US) |
---|---|
Journal | Frontiers in Human Neuroscience |
Issue number | NOVEMBER |
DOIs | |
State | Published - Nov 2011 |
Externally published | Yes |
Keywords
- Attention
- Cognition
- ERP
- FMRI
- Memory
- Number
- Representation
ASJC Scopus subject areas
- Neuropsychology and Physiological Psychology
- Neurology
- Psychiatry and Mental health
- Biological Psychiatry
- Behavioral Neuroscience