Two-Stage Trajectory Optimization for Flapping Flight with Data-Driven Models

Jonathan Hoff, Joohyung Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Underactuated robots often require involved routines for trajectory planning due to their complex dynamics. Flapping-wing aerial vehicles have unsteady aerodynamics and periodic gaits that complicate the planning procedure. In this paper, we improve upon existing methods for flight planning by introducing a two-stage optimization routine to plan flapping flight trajectories. The first stage solves a trajectory optimization problem with a data-driven fixed-wing approximation model trained with experimental flight data. The solution to this is used as the initial guess for a second stage optimization using a flapping-wing model trained with the same flight data. We demonstrate the effectiveness of this approach with a bat robot in both simulation and experimental flight results. The speed of convergence, the dependency on the initial guess, and the quality of the solution are improved, and the robot is able to track the optimized trajectory of a dive maneuver.

Original languageEnglish (US)
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9594-9600
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: May 30 2021Jun 5 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period5/30/216/5/21

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Two-Stage Trajectory Optimization for Flapping Flight with Data-Driven Models'. Together they form a unique fingerprint.

Cite this