Two-Stage Chemical Absorption-Biological Reduction System for NO Removal: Model Development and Footprint Estimation

Jingkai Zhao, Chunyan Zhang, Meifang Li, Sujing Li, Wei Li, Shihan Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

The two-stage chemical absorption-biological reduction (CABR) system, comprised of an absorption column and a bioreactor, is regarded as a promising option for NO removal from the middle- and small-sized boilers. In this work, a steady-state rate-based model was developed for the two-stage CABR system. The developed model was validated by the data obtained from a laboratory two-stage CABR setup and then used for the estimation of the footprints for treating a 5 × 104 m3 h-1 flue gas from a 14 MW coal-fired steam boiler. For a baseline case (L/G = 10 L m-3, Cin,NO = 350 ppm, Cin,O2 = 6% (v/v)), the designed absorption column size was 3.60 x 8.75 m (d x h), while the bioreduction column was set at 3.60 x 8.50 m (d x h). Furthermore, sensitive analysis including the influence of gas concentrations, packing properties, and microorganism activities was investigated to optimize the design and operation of two-stage CABR process. Under optimized conditions, the footprint of the bioreactor can be downsized by 22.74%. It is believed that this work can provide fundamental data for the industrial application of the two-stage CABR system in the middle- and small-sized boilers.

Original languageEnglish (US)
Pages (from-to)8454-8461
Number of pages8
JournalEnergy and Fuels
Volume31
Issue number8
DOIs
StatePublished - Aug 17 2017
Externally publishedYes

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Two-Stage Chemical Absorption-Biological Reduction System for NO Removal: Model Development and Footprint Estimation'. Together they form a unique fingerprint.

Cite this