Two-sided Green function estimates for killed subordinate Brownian motions

Panki Kim, Renming Song, Zoran Vondraček

Research output: Contribution to journalArticlepeer-review

Abstract

A subordinate Brownian motion is a Lévy process that can be obtained by replacing the time of the Brownian motion by an independent subordinator. The infinitesimal generator of a subordinate Brownian motion is-φ(-Δ), where φ is the Laplace exponent of the subordinator. In this paper, we consider a large class of subordinate Brownian motions without diffusion component and with φ comparable to a regularly varying function at infinity. This class of processes includes symmetric stable processes, relativistic stable processes, sums of independent symmetric stable processes, sums of independent relativistic stable processes, and much more. We give sharp two-sided estimates on the Green functions of these subordinate Brownian motions in any bounded k-fat open set D. When D is a bounded C 1, 1 open set, we establish an explicit form of the estimates in terms of the distance to the boundary. As a consequence of such sharp Green function estimates, we obtain a boundary Harnack principle in C 1, 1 open sets with explicit rate of decay.

Original languageEnglish (US)
Pages (from-to)927-958
Number of pages32
JournalProceedings of the London Mathematical Society
Volume104
Issue number5
DOIs
StatePublished - May 2012

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Two-sided Green function estimates for killed subordinate Brownian motions'. Together they form a unique fingerprint.

Cite this