Two-photon laser-induced fluorescence of nitric oxide in a diesel engine

Glen C. Martin, Charles J. Mueller, Chia-Fon Lee

Research output: Contribution to journalConference article

Abstract

In-cylinder concentrations of nitric oxide (NO) in a diesel engine were studied using a laser-induced fluorescence (LIF) technique that employs two-photon excitation. Two-photon NO LIF images were acquired during the expansion and exhaust portions of the engine cycle providing useful NO fluorescence signal levels from 60° after top dead center through the end of the exhaust stroke. The engine was fueled with the oxygenated compound diethylene glycol diethyl ether to minimize soot within the combustion chamber. Results of the two-photon NO LIF technique from the exhaust portion of the cycle were compared with chemiluminescence NO exhaust-gas measurements over a range of engine loads from 1.4 to 16 bar gross indicated mean effective pressure. The overall trend of the two-photon NO LIF signal showed good qualitative agreement with the NO exhaust-gas measurements.

Original languageEnglish (US)
JournalSAE Technical Papers
DOIs
StatePublished - Jan 1 2006
Event2006 SAE World Congress - Detroit, MI, United States
Duration: Apr 3 2006Apr 6 2006

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Two-photon laser-induced fluorescence of nitric oxide in a diesel engine'. Together they form a unique fingerprint.

  • Cite this