Abstract
Emerging atomic layer semiconducting crystals such as molybdenum disulfide (MoS2) are promising candidates for flexible electronics and strain-tunable devices due to their ultrahigh strain limits (up to 20-30%) and strain-tunable bandgaps. However, high strain levels, controllable isotropic and anisotropic biaxial strains in single- and few-layer MoS2 on device-oriented flexible substrates permitting convenient and fast strain tuning, remain unexplored. Here, we demonstrate a "blown-bubble" bulge technique for efficiently applying large strains to atomic layer MoS2 devices on a flexible substrate. As the strain increases via bulging, we achieve continuous tuning of Raman and photoluminescence (PL) signatures in single- and few-layer MoS2, including splitting of Raman peaks. With proper clamping of the MoS2 crystals, we apply up to 9.4% strain in the flexible substrate, which causes a doubly clamped single-layer MoS2 to fracture at 2.2-2.6% strain measured by PL and 2.9-3.5% strain measured by Raman spectroscopy. This study opens new pathways for exploiting 2D semiconductors on stretchable substrates for flexible electronics, mechanical transducers, tunable optoelectronics, and biomedical transducers on curved and bulging surfaces.
Original language | English (US) |
---|---|
Pages (from-to) | 4568-4575 |
Number of pages | 8 |
Journal | Nano letters |
Volume | 17 |
Issue number | 8 |
DOIs | |
State | Published - Aug 9 2017 |
Externally published | Yes |
Keywords
- 2D semiconductors
- atomic layer MoS
- bulge test
- photoluminescence (PL)
- Raman spectroscopy
- strain tuning
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanical Engineering