Triggered Transience of Plastic Materials by a Single Electron Transfer Mechanism

Adam M. Feinberg, Oleg Davydovich, Evan M. Lloyd, Douglas G. Ivanoff, Bethany Shiang, Nancy R. Sottos, Jeffrey S. Moore

Research output: Contribution to journalArticlepeer-review


Transient polymers rapidly and controllably depolymerize in response to a specific trigger, typically by a chain-end unzipping mechanism. Triggers, such as heat, light, and chemical stimuli, are generally dependent on the chemistry of the polymer backbone or end groups. Single electron transfer (SET), in contrast to other triggering mechanisms, is achievable by various means including chemical, electrochemical, and photochemical oxidation or reduction. Here, we identify SET and subsequent mesolytic cleavage as the major thermal triggering mechanism of cyclic poly(phthalaldehyde) (cPPA) depolymerization. Multimodal SET triggering is demonstrated by both chemical and photoredox-triggered depolymerization of cPPA. Redox-active small molecules (p-chloranil and 1,3,5-trimethoxybenzene) were used to tune the depolymerization onset temperature of cPPA over the range 105-135 °C. Extending this mechanism to photoredox catalysis, N-methylacridinium hexafluorophosphate (NMAPF6) was used to photochemically degrade cPPA in solution and thin films. Finally, we fabricated photodegradable cPPA monoliths with a storage modulus of 1.8 GPa and demonstrated complete depolymerization within 25 min of sunlight exposure. Sunlight-triggered depolymerization of cPPA is demonstrated and potentially useful for the manufacture of transient devices that vanish leaving little or no trace. Most importantly, this new mechanism is likely to inspire other SET-triggered transient polymers, whose development may address the ongoing crisis of plastic pollution.

Original languageEnglish (US)
Pages (from-to)266-273
Number of pages8
JournalACS Central Science
Issue number2
StatePublished - Feb 26 2020

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering


Dive into the research topics of 'Triggered Transience of Plastic Materials by a Single Electron Transfer Mechanism'. Together they form a unique fingerprint.

Cite this