TRIBAL: Tree Inference of B Cell Clonal Lineages

Leah L. Weber, Derek Reiman, Mrinmoy S. Roddur, Yuanyuan Qi, Mohammed El-Kebir, Aly A. Khan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

B cells are a critical component of the adaptive immune system. Single cell RNA-sequencing (scRNA-seq) has allowed for both profiling of B cell receptor (BCR) sequences and gene expression. However, understanding the adaptive and evolutionary mechanisms of B cells in response to specific stimuli remains a significant challenge in the field of immunology. We introduce a new method, TRIBAL, which aims to infer the evolutionary history of clonally related B cells from scRNA-seq data. The key insight of TRIBAL is that inclusion of isotype data into the B cell lineage inference problem is valuable for reducing phylogenetic uncertainty that arises when only considering the receptor sequences. Consequently, the TRIBAL inferred B cell lineage trees jointly capture the somatic mutations introduced to the B cell receptor during affinity maturation and isotype transitions during class switch recombination. In addition, TRIBAL infers isotype transition probabilities that are valuable for gaining insight into the dynamics of class switching. Via in silico experiments, we demonstrate that TRIBAL infers isotype transition probabilities with the ability to distinguish between direct versus sequential switching in a B cell population. This results in more accurate B cell lineage trees and corresponding ancestral sequence and class switch reconstruction compared to competing methods. Using real-world scRNA-seq datasets, we show that TRIBAL recapitulates expected biological trends in a model affinity maturation system. Furthermore, the B cell lineage trees inferred by TRIBAL were equally plausible for the BCR sequences as those inferred by competing methods but yielded lower entropic partitions for the isotypes of the sequenced B cell. Thus, our method holds the potential to further advance our understanding of vaccine responses, disease progression, and the identification of therapeutic antibodies.

Original languageEnglish (US)
Title of host publicationResearch in Computational Molecular Biology - 28th Annual International Conference, RECOMB 2024, Proceedings
EditorsJian Ma
PublisherSpringer
Pages364-367
Number of pages4
ISBN (Print)9781071639887
DOIs
StatePublished - 2024
Event28th International Conference on Research in Computational Molecular Biology, RECOMB 2024 - Cambridge, United States
Duration: Apr 29 2024May 2 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14758 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference28th International Conference on Research in Computational Molecular Biology, RECOMB 2024
Country/TerritoryUnited States
CityCambridge
Period4/29/245/2/24

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'TRIBAL: Tree Inference of B Cell Clonal Lineages'. Together they form a unique fingerprint.

Cite this