Abstract
We introduce a new approach and prove that the maximum number of triangles in a (Formula presented.) -free graph on (Formula presented.) vertices is at most (Formula presented.) We show a connection to (Formula presented.) -uniform hypergraphs without (Berge) cycles of length less than six, and estimate their maximum possible size. Using our approach, we also (slightly) improve the previous estimate on the maximum size of an induced- (Formula presented.) -free and (Formula presented.) -free graph.
Original language | English (US) |
---|---|
Pages (from-to) | 26-39 |
Number of pages | 14 |
Journal | Journal of Graph Theory |
Volume | 99 |
Issue number | 1 |
Early online date | Jul 26 2021 |
DOIs | |
State | Published - Jan 2022 |
Externally published | Yes |
Keywords
- Berge hypergraphs
- generalized Turán
- triangles
ASJC Scopus subject areas
- Geometry and Topology
- Discrete Mathematics and Combinatorics