TY - JOUR
T1 - Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint
AU - Zopf, David A.
AU - Flanagan, Colleen L.
AU - Wheeler, Matthew
AU - Hollister, Scott J.
AU - Green, Glenn E.
PY - 2014/1
Y1 - 2014/1
N2 - IMPORTANCE The study demonstrates use of a novel intervention for severe tracheobronchomalacia (TBM). OBJECTIVE To test a novel, 3-dimensionally (3D) printed, bioresorbable airway splint for efficacy in extending survival in a porcine model of severe, life-threatening TBM. DESIGN AND PARTICIPANTS A randomized, prospective animal trial was used to evaluate an external airway splint as treatment of severe, life-threatening TBM in a multi-institutional, multidisciplinary collaboration between a biomedical engineering department and an academic animal surgery center. Six 2-month-old Yorkshire pigs underwent tracheal cartilage division and inner tracheal lumen dissociation and were randomly assigned to splint treatment (n = 3) or control groups (n = 3). Two additional pigs had the splint placed over their normal trachea. INTERVENTIONS A 3D-printed, bioresorbable airway splint was assessed in a porcine animal model of life-threatening TBM. The open-cylindrical, bellow-shaped, porous polycaprolactone splint was placed externally and designed to suspend the underlying collapsed airway. Two additional animals were splinted without model creation. MAIN OUTCOMES AND MEASURES The observer-basedWestley Clinical Croup Scalewas used to assess the clinical condition of animals postoperatively. Animal survival time was noted. RESULTS Complete or nearly complete tracheal lumen collapse was observed in each animal, with resolution of symptoms in all of the experimental animals after splint placement. Using our severe TBM animal model, survival was significantly longer in the experimental group receiving the airway splint after model creation than in the control group (P = .0495). CONCLUSIONS AND RELEVANCE A multidisciplinary effort producing a computer-aided designed, computer-aided manufactured bioresorbable tracheobronchial splint was tested in a porcine model of severe TBM and was found to extend survival time. Mortality in the splinted group was ascribed to the TBM model based on the lack of respiratory distress in splinted pigs, long-term survival in animals implanted with the splint without TBM, and necropsy findings.
AB - IMPORTANCE The study demonstrates use of a novel intervention for severe tracheobronchomalacia (TBM). OBJECTIVE To test a novel, 3-dimensionally (3D) printed, bioresorbable airway splint for efficacy in extending survival in a porcine model of severe, life-threatening TBM. DESIGN AND PARTICIPANTS A randomized, prospective animal trial was used to evaluate an external airway splint as treatment of severe, life-threatening TBM in a multi-institutional, multidisciplinary collaboration between a biomedical engineering department and an academic animal surgery center. Six 2-month-old Yorkshire pigs underwent tracheal cartilage division and inner tracheal lumen dissociation and were randomly assigned to splint treatment (n = 3) or control groups (n = 3). Two additional pigs had the splint placed over their normal trachea. INTERVENTIONS A 3D-printed, bioresorbable airway splint was assessed in a porcine animal model of life-threatening TBM. The open-cylindrical, bellow-shaped, porous polycaprolactone splint was placed externally and designed to suspend the underlying collapsed airway. Two additional animals were splinted without model creation. MAIN OUTCOMES AND MEASURES The observer-basedWestley Clinical Croup Scalewas used to assess the clinical condition of animals postoperatively. Animal survival time was noted. RESULTS Complete or nearly complete tracheal lumen collapse was observed in each animal, with resolution of symptoms in all of the experimental animals after splint placement. Using our severe TBM animal model, survival was significantly longer in the experimental group receiving the airway splint after model creation than in the control group (P = .0495). CONCLUSIONS AND RELEVANCE A multidisciplinary effort producing a computer-aided designed, computer-aided manufactured bioresorbable tracheobronchial splint was tested in a porcine model of severe TBM and was found to extend survival time. Mortality in the splinted group was ascribed to the TBM model based on the lack of respiratory distress in splinted pigs, long-term survival in animals implanted with the splint without TBM, and necropsy findings.
UR - http://www.scopus.com/inward/record.url?scp=84892703743&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84892703743&partnerID=8YFLogxK
U2 - 10.1001/jamaoto.2013.5644
DO - 10.1001/jamaoto.2013.5644
M3 - Article
C2 - 24232078
AN - SCOPUS:84892703743
SN - 2168-6181
VL - 140
SP - 66
EP - 71
JO - JAMA Otolaryngology - Head and Neck Surgery
JF - JAMA Otolaryngology - Head and Neck Surgery
IS - 1
ER -