Traveling and solitary waves in monodisperse and dimer granular chains

Yuli Starosvetsky, K. R. Jayaprakash, Alexander F. Vakakis

Research output: Contribution to journalReview articlepeer-review


We provide a review of propagating traveling waves and solitary pulses in uncompressed one-dimensional (1d) ordered granular media. The first such solution in homogeneous granular media was discovered by Nesterenko in the form of a single-hump solitary pulse with energy-dependent profile and velocity. Considering directly the discrete, strongly nonlinear governing equations of motion of these media (i.e., without resorting to continuum approximation or homogenization), we show the existence of countably infinite families of stable multi-hump propagating traveling waves with arbitrary wavelengths. A semi-analytical approach is used to study the dependence of these waves on spatial periodicity (wavenumber) and energy, and to show that in a certain asymptotic limit, these families converge to the single-hump Nesterenko solitary wave. Then the study is extended in dimer granular chains composed of alternating "heavy" and "light" beads. For a set of specific mass ratios between the light and heavy beads, we show the existence of multi-hump solitary waves that propagate faster than the Nesterenko solitary wave in the corresponding homogeneous granular chain composed of only heavy beads. The existence of these waves has interesting implications in energy transmission in ordered granular chains.

Original languageEnglish (US)
Article number1742001
JournalInternational Journal of Modern Physics B
Issue number10
StatePublished - Apr 20 2017


  • Solitary pulse
  • dimer chain

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Condensed Matter Physics


Dive into the research topics of 'Traveling and solitary waves in monodisperse and dimer granular chains'. Together they form a unique fingerprint.

Cite this