Abstract
We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of both transverse electric and magnetic fields. We find that these fields provide a controlled means of tuning low-energy band-structure properties such as inducing gaps in the spectrum, breaking various symmetries, and altering the Fermi velocities. We show that the fields can strongly affect electron-electron interactions yielding tunable Luttinger-liquid physics, the possibility of spin-charge-band separation, and a competition between spin-density-wave and charge-density-wave orders. For short tubes, the fields can alter boundary conditions and associated single-particle level spacings as well as quantum dot behavior.
Original language | English (US) |
---|---|
Article number | 205421 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 79 |
Issue number | 20 |
DOIs | |
State | Published - May 1 2009 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics