TY - PAT
T1 - Transistor laser electrical and optical bistable switching
AU - Wu, Mong-Kai
AU - Tan, Fei
AU - Holonyak, Nick
AU - Feng, Milton
PY - 2019/5/7
Y1 - 2019/5/7
N2 - A method for electrical and optical bistable switching, including the following steps: providing a semiconductor device that includes a semiconductor base region of a first conductivity type between semiconductor collector and emitter regions of a second conductivity type, providing a quantum size region in the base region, and providing base, collector and emitter terminals respectively coupled with the base, collector, and emitter regions; providing input electrical signals with respect to the base, collector, and emitter terminals to obtain an electrical output signal and light emission from the base region; providing an optical resonant cavity that encloses at least a portion of the base region and the light emission therefrom, an optical output signal being obtained from a portion of the light in the optical resonant cavity; and modifying the input electrical signals to switch back and forth between a first state wherein the photon density in the cavity is below a predetermined threshold and the optical output is incoherent, and a second state wherein the photon density in the cavity is above the predetermined threshold and the optical output is coherent, said switching from the first to the second state being implemented by modifying the input electrical signals to reduce optical absorption by collector intra-cavity photon-assisted tunneling, and the switching from the second to the first state being implemented by modifying the input electrical signals to increase photon absorption by collector intra-cavity photon-assisted tunneling.
AB - A method for electrical and optical bistable switching, including the following steps: providing a semiconductor device that includes a semiconductor base region of a first conductivity type between semiconductor collector and emitter regions of a second conductivity type, providing a quantum size region in the base region, and providing base, collector and emitter terminals respectively coupled with the base, collector, and emitter regions; providing input electrical signals with respect to the base, collector, and emitter terminals to obtain an electrical output signal and light emission from the base region; providing an optical resonant cavity that encloses at least a portion of the base region and the light emission therefrom, an optical output signal being obtained from a portion of the light in the optical resonant cavity; and modifying the input electrical signals to switch back and forth between a first state wherein the photon density in the cavity is below a predetermined threshold and the optical output is incoherent, and a second state wherein the photon density in the cavity is above the predetermined threshold and the optical output is coherent, said switching from the first to the second state being implemented by modifying the input electrical signals to reduce optical absorption by collector intra-cavity photon-assisted tunneling, and the switching from the second to the first state being implemented by modifying the input electrical signals to increase photon absorption by collector intra-cavity photon-assisted tunneling.
M3 - Patent
M1 - 10283933
ER -