Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation

Ashley R. Knoerdel, Whitney C. Blocher McTigue, Charles E. Sing

Research output: Contribution to journalArticlepeer-review


Oppositely charged polyelectrolytes can undergo an associative phase separation, in a process known as polymeric complex coacervation. This phenomenon is driven by the electrostatic attraction between polyanion and polycation species, leading to the formation of a polymer-dense coacervate phase and a coexisting polymer-dilute supernatant phase. There has been significant recent interest in the physical origin and features of coacervation; yet notably, experiments often use weak polyelectrolytes the charge state of which depends on solution pH, while theoretical or computational efforts typically assume strong polyelectrolytes that remain fully charged. There have been only a few efforts to address this limitation, and thus there has been little exploration of how pH can affect complex coacervation. In this paper, we modify a transfer matrix theory of coacervation to account for acid-base equilibria, taking advantage of its ability to directly account for some local ion correlations that will affect monomer charging. We show that coacervation can stabilize the charged state of a weak polyelectrolyte via the proximity of oppositely charged monomers, and can lead to asymmetric phase diagrams where the positively and negatively charged polyelectrolytes exhibit different behaviors near the pKa of either chain. Specifically, there is a partitioning of one of the salt species to a coacervate to maintain electroneutrality when one of the polyelectrolytes is only partially charged. This results in the depletion of the same salt species in the supernatant, and overall can suppress phase separation. We also demonstrate that, when one of the species is only partially charged, mixtures that are off-stoichiometric in volume fraction but stoichiometric in charge exhibit the greatest propensity to form coacervate phases.

Original languageEnglish (US)
Pages (from-to)8965-8980
Number of pages16
JournalJournal of Physical Chemistry B
Issue number31
StatePublished - Aug 12 2021

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation'. Together they form a unique fingerprint.

Cite this