Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation

Adit Krishnan, Mahashweta Das, Mangesh Bendre, Hao Yang, Hari Sundaram

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.

Original languageEnglish (US)
Title of host publicationSIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery
Pages1081-1090
Number of pages10
ISBN (Electronic)9781450380164
DOIs
StatePublished - Jul 25 2020
Event43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020 - Virtual, Online, China
Duration: Jul 25 2020Jul 30 2020

Publication series

NameSIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference43rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020
Country/TerritoryChina
CityVirtual, Online
Period7/25/207/30/20

Keywords

  • contextual invariants
  • cross-domain recommendation
  • data sparsity
  • neural layer adaptation
  • transfer learning

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Information Systems
  • Software

Fingerprint

Dive into the research topics of 'Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation'. Together they form a unique fingerprint.

Cite this