TY - GEN
T1 - Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization
AU - Zhu, Qi
AU - Yang, Carl
AU - Xu, Yidan
AU - Wang, Haonan
AU - Zhang, Chao
AU - Han, Jiawei
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Graph neural networks (GNNs) have achieved superior performance in various applications, but training dedicated GNNs can be costly for large-scale graphs. Some recent work started to study the pre-training of GNNs. However, none of them provide theoretical insights into the design of their frameworks, or clear requirements and guarantees towards their transferability. In this work, we establish a theoretically grounded and practically useful framework for the transfer learning of GNNs. Firstly, we propose a novel view towards the essential graph information and advocate the capturing of it as the goal of transferable GNN training, which motivates the design of EGI (Ego-Graph Information maximization) to analytically achieve this goal. Secondly, when node features are structure-relevant, we conduct an analysis of EGI transferability regarding the difference between the local graph Laplacians of the source and target graphs. We conduct controlled synthetic experiments to directly justify our theoretical conclusions. Comprehensive experiments on two real-world network datasets show consistent results in the analyzed setting of direct-transfering, while those on large-scale knowledge graphs show promising results in the more practical setting of transfering with fine-tuning.
AB - Graph neural networks (GNNs) have achieved superior performance in various applications, but training dedicated GNNs can be costly for large-scale graphs. Some recent work started to study the pre-training of GNNs. However, none of them provide theoretical insights into the design of their frameworks, or clear requirements and guarantees towards their transferability. In this work, we establish a theoretically grounded and practically useful framework for the transfer learning of GNNs. Firstly, we propose a novel view towards the essential graph information and advocate the capturing of it as the goal of transferable GNN training, which motivates the design of EGI (Ego-Graph Information maximization) to analytically achieve this goal. Secondly, when node features are structure-relevant, we conduct an analysis of EGI transferability regarding the difference between the local graph Laplacians of the source and target graphs. We conduct controlled synthetic experiments to directly justify our theoretical conclusions. Comprehensive experiments on two real-world network datasets show consistent results in the analyzed setting of direct-transfering, while those on large-scale knowledge graphs show promising results in the more practical setting of transfering with fine-tuning.
UR - http://www.scopus.com/inward/record.url?scp=85131823540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131823540&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85131823540
T3 - Advances in Neural Information Processing Systems
SP - 1766
EP - 1779
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -