Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus

Shin Yi Lee Marzano, Houston A. Hobbs, Berlin D. Nelson, Glen L. Hartman, Darin M. Eastburn, Nancy K. McCoppin, Leslie L. Domier

Research output: Contribution to journalArticle

Abstract

A recombinant strain of Sclerotinia sclerotiorum hypovirus 2 (SsHV2) was identified from a North American Sclerotinia sclerotiorum isolate (328) from lettuce (Lactuca sativa L.) by high-throughput sequencing of total RNA. The 5'- and 3'-terminal regions of the genome were determined by rapid amplification of cDNA ends. The assembled nucleotide sequence was up to 92% identical to two recently reported SsHV2 strains but contained a deletion near its 5' terminus of more than 1.2 kb relative to the other SsHV2 strains and an insertion of 524 nucleotides (nt) that was distantly related to Valsa ceratosperma hypovirus 1. This suggests that the new isolate is a heterologous recombinant of SsHV2 with a yet-uncharacterized hypovirus. We named the new strain Sclerotinia sclerotiorum hypovirus 2 Lactuca (SsHV2L) and deposited the sequence in GenBank with accession number KF898354. Sclerotinia sclerotiorum isolate 328 was coinfected with a strain of Sclerotinia sclerotiorum endornavirus 1 and was debilitated compared to cultures of the same isolate that had been cured of virus infection by cycloheximide treatment and hyphal tipping. To determine whether SsHV2L alone could induce hypovirulence in S. sclerotiorum, a full-length cDNA of the 14,538-nt viral genome was cloned. Transcripts corresponding to the viral RNA were synthesized in vitro and transfected into a virus-free isolate of S. sclerotiorum, DK3. Isolate DK3 transfected with SsHV2L was hypovirulent on soybean and lettuce and exhibited delayed maturation of sclerotia relative to virus-free DK3, completing Koch's postulates for the association of hypovirulence with SsHV2L.

Original languageEnglish (US)
Pages (from-to)5060-5071
Number of pages12
JournalJournal of virology
Volume89
Issue number9
DOIs
StatePublished - Jan 1 2015

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus'. Together they form a unique fingerprint.

  • Cite this