Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice

Michael C. Saul, Christopher H. Seward, Joseph M. Troy, Huimin Zhang, Laura G. Sloofman, Xiaochen Lu, Patricia A. Weisner, Derek Caetano-Anolles, Hao Sun, Sihai Dave Zhao, Sriram Chandrasekaran, Saurabh Sinha, Lisa Stubbs

Research output: Contribution to journalArticlepeer-review

Abstract

Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.

Original languageEnglish (US)
Pages (from-to)959-972
Number of pages14
JournalGenome Research
Volume27
Issue number6
DOIs
StatePublished - Jun 2017

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

Fingerprint

Dive into the research topics of 'Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice'. Together they form a unique fingerprint.

Cite this