TY - JOUR
T1 - Transboundary impacts on regional ground water modeling in Texas
AU - Rainwater, Ken
AU - Stovall, Jeff
AU - Frailey, Scott
AU - Urban, Lloyd
PY - 2005/9
Y1 - 2005/9
N2 - Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to identify counties at risk of low final ground water storage volume or low levels of satisfied demand by 2050.
AB - Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to identify counties at risk of low final ground water storage volume or low levels of satisfied demand by 2050.
UR - http://www.scopus.com/inward/record.url?scp=25144436442&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=25144436442&partnerID=8YFLogxK
U2 - 10.1111/j.1745-6584.2005.00068.x
DO - 10.1111/j.1745-6584.2005.00068.x
M3 - Article
C2 - 16149966
AN - SCOPUS:25144436442
SN - 0017-467X
VL - 43
SP - 706
EP - 716
JO - Ground Water
JF - Ground Water
IS - 5
ER -