TY - GEN
T1 - Trajectory generation for distributed electric propulsion vehicles with propeller synchronization
AU - Patterson, Andrew P.
AU - Ackerman, Kasey A.
AU - Hovakimyan, Naira
AU - Gregory, Irene M.
N1 - Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2021
Y1 - 2021
N2 - In this paper, we propose a method for generating dynamically feasible trajectories for an acoustically aware vehicle with propeller phase control. The trajectory generation procedure allows both propeller phase control and navigation objectives to be considered simultaneously. The presented method is demonstrated where the mission objectives are given as a desired position and phase trajectory. From these trajectories, the full desired state of the vehicle is calculated. Furthermore, the control inputs that realize the desired mission objectives are computed. The acoustic performance for the given trajectory is estimated in terms of sound pressure level as a function of tracking performance. The method is demonstrated in simulation, where the vehicle must navigate through an urban environment with both spatial and acoustic constraints. In the presented scenario, the vehicle must follow a given flight path, and can only reduce sound pressure level by changing the propeller phase targets.
AB - In this paper, we propose a method for generating dynamically feasible trajectories for an acoustically aware vehicle with propeller phase control. The trajectory generation procedure allows both propeller phase control and navigation objectives to be considered simultaneously. The presented method is demonstrated where the mission objectives are given as a desired position and phase trajectory. From these trajectories, the full desired state of the vehicle is calculated. Furthermore, the control inputs that realize the desired mission objectives are computed. The acoustic performance for the given trajectory is estimated in terms of sound pressure level as a function of tracking performance. The method is demonstrated in simulation, where the vehicle must navigate through an urban environment with both spatial and acoustic constraints. In the presented scenario, the vehicle must follow a given flight path, and can only reduce sound pressure level by changing the propeller phase targets.
UR - http://www.scopus.com/inward/record.url?scp=85100311819&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100311819&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85100311819
SN - 9781624106095
T3 - AIAA Scitech 2021 Forum
SP - 1
EP - 10
BT - AIAA Scitech 2021 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
Y2 - 11 January 2021 through 15 January 2021
ER -