TY - GEN
T1 - Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
AU - Huang, Yujia
AU - Zhang, Huan
AU - Shi, Yuanyuan
AU - Kolter, J. Zico
AU - Anandkumar, Anima
N1 - Funding Information:
Y. Huang is supported by DARPA LwLL grants. A. Anandkumar is supported in part by Bren endowed chair, DARPA LwLL grants, Microsoft, Google, Adobe faculty fellowships, and DE Logi grant. Huan Zhang is supported by funding from the Bosch Center for Artificial Intelligence.
Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Certified robustness is a desirable property for deep neural networks in safety-critical applications, and popular training algorithms can certify robustness of a neural network by computing a global bound on its Lipschitz constant. However, such a bound is often loose: it tends to over-regularize the neural network and degrade its natural accuracy. A tighter Lipschitz bound may provide a better tradeoff between natural and certified accuracy, but is generally hard to compute exactly due to non-convexity of the network. In this work, we propose an efficient and trainable local Lipschitz upper bound by considering the interactions between activation functions (e.g. ReLU) and weight matrices. Specifically, when computing the induced norm of a weight matrix, we eliminate the corresponding rows and columns where the activation function is guaranteed to be a constant in the neighborhood of each given data point, which provides a provably tighter bound than the global Lipschitz constant of the neural network. Our method can be used as a plug-in module to tighten the Lipschitz bound in many certifiable training algorithms. Furthermore, we propose to clip activation functions (e.g., ReLU and MaxMin) with a learnable upper threshold and a sparsity loss to assist the network to achieve an even tighter local Lipschitz bound. Experimentally, we show that our method consistently outperforms state-of-the-art methods in both clean and certified accuracy on MNIST, CIFAR-10 and TinyImageNet datasets with various network architectures.
AB - Certified robustness is a desirable property for deep neural networks in safety-critical applications, and popular training algorithms can certify robustness of a neural network by computing a global bound on its Lipschitz constant. However, such a bound is often loose: it tends to over-regularize the neural network and degrade its natural accuracy. A tighter Lipschitz bound may provide a better tradeoff between natural and certified accuracy, but is generally hard to compute exactly due to non-convexity of the network. In this work, we propose an efficient and trainable local Lipschitz upper bound by considering the interactions between activation functions (e.g. ReLU) and weight matrices. Specifically, when computing the induced norm of a weight matrix, we eliminate the corresponding rows and columns where the activation function is guaranteed to be a constant in the neighborhood of each given data point, which provides a provably tighter bound than the global Lipschitz constant of the neural network. Our method can be used as a plug-in module to tighten the Lipschitz bound in many certifiable training algorithms. Furthermore, we propose to clip activation functions (e.g., ReLU and MaxMin) with a learnable upper threshold and a sparsity loss to assist the network to achieve an even tighter local Lipschitz bound. Experimentally, we show that our method consistently outperforms state-of-the-art methods in both clean and certified accuracy on MNIST, CIFAR-10 and TinyImageNet datasets with various network architectures.
UR - http://www.scopus.com/inward/record.url?scp=85127003503&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127003503&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85127003503
T3 - Advances in Neural Information Processing Systems
SP - 22745
EP - 22757
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -