Abstract
State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still one of the holy grail tasks of language understanding for dialogue systems. This paper proposes a deep learning based approach that can utilize only the slot description in context without the need for any labeled or unlabeled in-domain examples, to quickly bootstrap a new domain. The main idea of this paper is to leverage the encoding of the slot names and descriptions within a multi-task deep learned slot filling model, to implicitly align slots across domains. The proposed approach is promising for solving the domain scaling problem and eliminating the need for any manually annotated data or explicit schema alignment. Furthermore, our experiments on multiple domains show that this approach results in significantly better slot-filling performance when compared to using only in-domain data, especially in the low data regime.
Original language | English (US) |
---|---|
Pages (from-to) | 2476-2480 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2017-August |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Event | 18th Annual Conference of the International Speech Communication Association, INTERSPEECH 2017 - Stockholm, Sweden Duration: Aug 20 2017 → Aug 24 2017 |
Keywords
- Deep learning
- Dialogue systems
- Domain adaptation
- Multi-task RNNs
- Slot-filling
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modeling and Simulation