TY - JOUR
T1 - Towards Understanding Adversarial Transferability in Federated Learning
AU - Li, Yijiang
AU - Gao, Ying
AU - Wang, Haohan
N1 - Publisher Copyright:
© 2024, Transactions on Machine Learning Research. All rights reserved.
PY - 2024
Y1 - 2024
N2 - We investigate a specific security risk in FL: a group of malicious clients has impacted the model during training by disguising their identities and acting as benign clients but later switching to an adversarial role. They use their data, which was part of the training set, to train a substitute model and conduct transferable adversarial attacks against the federated model. This type of attack is subtle and hard to detect because these clients initially appear to be benign. The key question we address is: How robust is the FL system to such covert attacks, especially compared to traditional centralized learning systems? We empirically show that the proposed attack imposes a high security risk to current FL systems. By using only 3% of the client’s data, we achieve the highest attack rate of over 80%. To further offer a full understanding of the challenges the FL system faces in transferable attacks, we provide a comprehensive analysis over the transfer robustness of FL across a spectrum of configurations. Surprisingly, FL systems show a higher level of robustness than their centralized counterparts, especially when both systems are equally good at handling regular, non-malicious data. We attribute this increased robustness to two main factors: 1) Decentralized Data Training: Each client trains the model on its own data, reducing the overall impact of any single malicious client. 2) Model Update Averaging: The updates from each client are averaged together, further diluting any malicious alterations. Both practical experiments and theoretical analysis support our conclusions. This research not only sheds light on the resilience of FL systems against hidden attacks but also raises important considerations for their future application and development.
AB - We investigate a specific security risk in FL: a group of malicious clients has impacted the model during training by disguising their identities and acting as benign clients but later switching to an adversarial role. They use their data, which was part of the training set, to train a substitute model and conduct transferable adversarial attacks against the federated model. This type of attack is subtle and hard to detect because these clients initially appear to be benign. The key question we address is: How robust is the FL system to such covert attacks, especially compared to traditional centralized learning systems? We empirically show that the proposed attack imposes a high security risk to current FL systems. By using only 3% of the client’s data, we achieve the highest attack rate of over 80%. To further offer a full understanding of the challenges the FL system faces in transferable attacks, we provide a comprehensive analysis over the transfer robustness of FL across a spectrum of configurations. Surprisingly, FL systems show a higher level of robustness than their centralized counterparts, especially when both systems are equally good at handling regular, non-malicious data. We attribute this increased robustness to two main factors: 1) Decentralized Data Training: Each client trains the model on its own data, reducing the overall impact of any single malicious client. 2) Model Update Averaging: The updates from each client are averaged together, further diluting any malicious alterations. Both practical experiments and theoretical analysis support our conclusions. This research not only sheds light on the resilience of FL systems against hidden attacks but also raises important considerations for their future application and development.
UR - http://www.scopus.com/inward/record.url?scp=85219576842&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85219576842&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85219576842
SN - 2835-8856
VL - 2024
JO - Transactions on Machine Learning Research
JF - Transactions on Machine Learning Research
ER -