Towards Scalable and Dynamic Social Sensing Using A Distributed Computing Framework

Daniel Yue Zhang, Chao Zheng, Dong Wang, Doug Thain, Xin Mu, Greg Madey, Chao Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With the rapid growth of online social media and ubiquitous Internet connectivity, social sensing has emerged as a new crowdsourcing application paradigm of collecting observations (often called claims) about the physical environment from humans or devices on their behalf. A fundamental problem in social sensing applications lies in effectively ascertaining the correctness of claims and the reliability of data sources without knowing either of them a priori, which is referred to as truth discovery. While significant progress has been made to solve the truth discovery problem, some important challenges have not been well addressed yet. First, existing truth discovery solutions did not fully solve the dynamic truth discovery problem where the ground truth of claims changes over time. Second, many current solutions are not scalable to large-scale social sensing events because of the centralized nature of their truth discovery algorithms. Third, the heterogeneity and unpredictability of the social sensing data traffic pose additional challenges to the resource allocation and system responsiveness. In this paper, we developed a Scalable Streaming Truth Discovery (SSTD) solution to address the above challenges. In this paper, we developed a Scalable Streaming Truth Discovery (SSTD) solution to address the above challenges. In particular, we first developed a dynamic truth discovery scheme based on Hidden Markov Models (HMM) to effectively infer the evolving truth of reported claims. We further developed a distributed framework to implement the dynamic truth discovery scheme using Work Queue in HTCondor system. We also integrated the SSTD scheme with an optimal workload allocation mechanism to dynamically allocate the resources (e.g., cores, memories) to the truth discovery tasks based on their computation requirements. We evaluated SSTD through real world social sensing applications using Twitter data feeds. The evaluation results on three real-world data traces (i.e., Boston Bombing, Paris Shooting and College Football) show that the SSTD scheme is scalable and outperforms the state-of-the-art truth discovery methods in terms of both effectiveness and efficiency.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE 37th International Conference on Distributed Computing Systems, ICDCS 2017
EditorsKisung Lee, Ling Liu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages966-976
Number of pages11
ISBN (Electronic)9781538617915
DOIs
StatePublished - Jul 13 2017
Externally publishedYes
Event37th IEEE International Conference on Distributed Computing Systems, ICDCS 2017 - Atlanta, United States
Duration: Jun 5 2017Jun 8 2017

Publication series

NameProceedings - International Conference on Distributed Computing Systems

Other

Other37th IEEE International Conference on Distributed Computing Systems, ICDCS 2017
Country/TerritoryUnited States
CityAtlanta
Period6/5/176/8/17

Keywords

  • Control Theory
  • Crowdsourcing
  • Distributed Computing
  • Hidden Markov Model
  • Socical Sensing
  • Truth Discovery

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Towards Scalable and Dynamic Social Sensing Using A Distributed Computing Framework'. Together they form a unique fingerprint.

Cite this