Abstract
To perform automatic family audio analysis, past studies have collected recordings using phone, video, or audio-only recording devices like LENA, investigated supervised learning methods, and used or fine-tuned general-purpose embeddings learned from large pretrained models. In this study, we advance the audio component of a new infant wearable multi-modal device called LittleBeats (LB) by learning family audio representation via wav2vec 2.0 (W2V2) pretraining. We show given a limited number of labeled LB home recordings, W2V2 pretrained using 1k-hour of unlabeled home recordings outperforms oracle W2V2 pretrained on 52k-hour unlabeled audio in terms of parent/infant speaker diarization (SD) and vocalization classifications (VC) at home. Extra relevant external unlabeled and labeled data further benefit W2V2 pretraining and fine-tuning. With SpecAug and environmental speech corruptions, we obtain 12% relative gain on SD and moderate boost on VC. Code and model weights are available.
Original language | English (US) |
---|---|
Pages (from-to) | 1035-1039 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2023-August |
DOIs | |
State | Published - 2023 |
Event | 24th International Speech Communication Association, Interspeech 2023 - Dublin, Ireland Duration: Aug 20 2023 → Aug 24 2023 |
Keywords
- family-infant audio analysis
- speaker diarization
- unsupervised learning
- vocalization classification
- wav2vec 2.0
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modeling and Simulation