Towards Real Time Team Optimization

Qinghai Zhou, Liangyue Li, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Teams can be often viewed as a dynamic system where the team configuration evolves over time (e.g., new members join the team; existing members leave the team; the skills of the members improve over time). Consequently, the performance of the team might be changing due to such team dynamics. A natural question is how to plan the (re-)staffing actions (e.g., recruiting a new team member) at each time step so as to maximize the expected cumulative performance of the team. In this paper, we address the problem of real-time team optimization by intelligently selecting the best candidates towards increasing the similarity between the current team and the high-performance teams according to the team configuration at each time-step. The key idea is to formulate it as a Markov Decision process (MDP) problem and leverage recent advances in reinforcement learning to optimize the team dynamically. The proposed method bears two main advantages, including (1) dynamics, being able to model the dynamics of the team to optimize the initial team towards the direction of a high-performance team via performance feedback; (2) efficacy, being able to handle the large state/action space via deep reinforcement learning based value estimation. We demonstrate the effectiveness of the proposed method through extensive empirical evaluations.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
EditorsChaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1008-1017
Number of pages10
ISBN (Electronic)9781728108582
DOIs
StatePublished - Dec 2019
Externally publishedYes
Event2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States
Duration: Dec 9 2019Dec 12 2019

Publication series

NameProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019

Conference

Conference2019 IEEE International Conference on Big Data, Big Data 2019
Country/TerritoryUnited States
CityLos Angeles
Period12/9/1912/12/19

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Information Systems
  • Information Systems and Management

Fingerprint

Dive into the research topics of 'Towards Real Time Team Optimization'. Together they form a unique fingerprint.

Cite this