Abstract

This paper adopts Latent Semantic Analysis (LSA) for longterm analysis of voice quality, in particular creakiness. Each automatically labeled creaky instance (word) is modeled as a document and different prosodic and syntactic cues as terms. This framework attempts to automatically identify the most salient correlates, or latent factors, of creakiness, and further assign each creaky instance (word) to one of the latent factors. The algorithm implemented in this study identifies at least two correlates of creakiness in Switchboard: (1) particles, coordinating conjunctions in repair/repeat locations, and filled pauses; (2) starts of various sentence/clause structures, such as Whadverb phrases, sentences and asides with sentence restarts at repair/repeat locations. Such automatic long-term voice quality analysis could pave the way for better incorporating voice quality in speech recognition, among other speech applications.

Original languageEnglish (US)
Title of host publicationProceedings of the 4th International Conference on Speech Prosody, SP 2008
PublisherInternational Speech Communication Association
Pages37-40
Number of pages4
ISBN (Print)9780616220030
StatePublished - 2008
Event4th International Conference on Speech Prosody 2008, SP 2008 - Campinas, Brazil
Duration: May 6 2008May 9 2008

Publication series

NameProceedings of the 4th International Conference on Speech Prosody, SP 2008

Other

Other4th International Conference on Speech Prosody 2008, SP 2008
Country/TerritoryBrazil
CityCampinas
Period5/6/085/9/08

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Software
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Towards interpretation of creakiness in switchboard'. Together they form a unique fingerprint.

Cite this