@inproceedings{4fcd64c5d8c24152907ecd05ce8b470a,
title = "Towards classification of social streams",
abstract = "Social streams have become very popular in recent years because of the increasing popularity of social media sites such as Twitter, and Facebook. Such social media sites create huge streams of data, which can be leveraged for a wide variety of applications. In this paper, we will focus on the classification problem for social streams. Unfortunately, such streams are extremely noisy, and contain large volumes of information, with information about network linkages between the participants exchanging messages. This is additional social information, associated with the text stream, which can be very helpful for classification. We combine an LSH method with an incremental SVM model in order to design an effective and efficient social context-sensitive streaming classifier for this scenario. The LSH model is used for learning the social context, and the SVM model is used for more effective classification within this context. We will present experimental results, which show the effectiveness of our techniques over a wide variety of other methods.",
keywords = "Data streams, Social streams, Text mining",
author = "Tsai, {Min Hsuan} and Aggarwal, {Charu C.} and Huang, {Thomas S.}",
note = "Publisher Copyright: Copyright {\textcopyright} SIAM.; SIAM International Conference on Data Mining 2015, SDM 2015 ; Conference date: 30-04-2015 Through 02-05-2015",
year = "2015",
language = "English (US)",
series = "SIAM International Conference on Data Mining 2015, SDM 2015",
publisher = "Society for Industrial and Applied Mathematics Publications",
pages = "649--657",
editor = "Jieping Ye and Suresh Venkatasubramanian",
booktitle = "SIAM International Conference on Data Mining 2015, SDM 2015",
address = "United States",
}