Towards an automated damage detection system for miter gates on navigation locks: Detecting boundary condition degradation

Brian A. Eick, Billie F. Spencer, Matthew D. Smith, Quincy G. Alexander, Stuart D. Foltz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Navigation locks are critical infrastructure components, and their closure for maintenance and repair can have significant impacts on the global economy. The current state of inspection and monitoring of lock components is generally to close the lock and perform a visual inspection. While structural health monitoring (SHM) of navigation locks is gaining acceptance, automation of the SHM process is lacking. This paper reports on efforts to develop an automated damage detection system for miter gates of navigation locks. The study focuses on using strain gage measurements to identify the redistribution of load throughout lock gates in the presence of damage. To eliminate the environmental variability in the data, a new damage sensitive feature is introduced, termed here as "slope" and defined as the derivative of the strain with respect to the water levels in the lock chamber. The slopes form a new, stationary time series effectively purged of environmental effects. Principal Component Analysis (PCA), a method of analyzing multivariate, stationary time series, is then used to detect significant changes in the statistics of slopes as an indication of damage. To validate the approach, damage is simulated in a finite element model, and the resulting changes in strain from the finite element model are superimposed on the measured data. The results demonstrate the potential of the proposed approach for detecting damage in navigational lock gates.

Original languageEnglish (US)
Title of host publicationStructural Health Monitoring 2017
Subtitle of host publicationReal-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017
EditorsFu-Kuo Chang, Fotis Kopsaftopoulos
PublisherDEStech Publications
Pages307-314
Number of pages8
ISBN (Electronic)9781605953304
DOIs
StatePublished - 2017
Event11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 - Stanford, United States
Duration: Sep 12 2017Sep 14 2017

Publication series

NameStructural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017
Volume1

Other

Other11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017
Country/TerritoryUnited States
CityStanford
Period9/12/179/14/17

ASJC Scopus subject areas

  • Health Information Management
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Towards an automated damage detection system for miter gates on navigation locks: Detecting boundary condition degradation'. Together they form a unique fingerprint.

Cite this