TY - GEN
T1 - Towards a theory of anonymous networking
AU - Ghaderi, J.
AU - Srikant, R.
PY - 2010
Y1 - 2010
N2 - The problem of anonymous networking when an eavesdropper observes packet timings in a communication network is considered. The goal is to hide the identities of source-destination nodes, and paths of information flow in the network. One way to achieve such an anonymity is to use mixers. Mixers are nodes that receive packets from multiple sources and change the timing of packets, by mixing packets at the output links, to prevent the eavesdropper from finding sources of outgoing packets. In this paper, we consider two simple but fundamental scenarios: double input-single output mixer and double input-double output mixer. For the first case, we use the information-theoretic definition of the anonymity, based on average entropy per packet, and find an optimal mixing strategy under a strict latency constraint. For the second case, perfect anonymity is considered, and a maximal throughput strategy with perfect anonymity is found that minimizes the average delay.
AB - The problem of anonymous networking when an eavesdropper observes packet timings in a communication network is considered. The goal is to hide the identities of source-destination nodes, and paths of information flow in the network. One way to achieve such an anonymity is to use mixers. Mixers are nodes that receive packets from multiple sources and change the timing of packets, by mixing packets at the output links, to prevent the eavesdropper from finding sources of outgoing packets. In this paper, we consider two simple but fundamental scenarios: double input-single output mixer and double input-double output mixer. For the first case, we use the information-theoretic definition of the anonymity, based on average entropy per packet, and find an optimal mixing strategy under a strict latency constraint. For the second case, perfect anonymity is considered, and a maximal throughput strategy with perfect anonymity is found that minimizes the average delay.
UR - http://www.scopus.com/inward/record.url?scp=77953312635&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953312635&partnerID=8YFLogxK
U2 - 10.1109/INFCOM.2010.5462155
DO - 10.1109/INFCOM.2010.5462155
M3 - Conference contribution
AN - SCOPUS:77953312635
SN - 9781424458363
T3 - Proceedings - IEEE INFOCOM
BT - 2010 Proceedings IEEE INFOCOM
T2 - IEEE INFOCOM 2010
Y2 - 14 March 2010 through 19 March 2010
ER -