Toward Improved Charge Separation through Conformational Control in Copper Coordination Complexes

Paul J. Griffin, Bronte J. Charette, John H. Burke, Josh Vura-Weis, Richard D. Schaller, David J. Gosztola, Lisa Olshansky

Research output: Contribution to journalArticlepeer-review


The continued development of solar energy as a renewable resource necessitates new approaches to sustaining photodriven charge separation (CS). We present a bioinspired approach in which photoinduced conformational rearrangements at a ligand are translated into changes in coordination geometry and environment about a bound metal ion. Taking advantage of the differential coordination properties of CuIand CuII, these dynamics aim to facilitate intramolecular electron transfer (ET) from CuIto the ligand to create a CS state. The synthesis and photophysical characterization of CuCl(dpaaR) (dpaa = dipicolylaminoacetophenone, with R = H and OMe) are presented. These ligands incorporate a fluorophore that gives rise to a twisted intramolecular charge transfer (TICT) excited state. Excited-state ligand twisting provides a tetragonal coordination geometry capable of capturing CuIIwhen an internal ortho-OMe binding site is present. NMR, IR, electron paramagnetic resonance (EPR), and optical spectroscopies, X-ray diffraction, and electrochemical methods establish the ground-state properties of these CuIand CuIIcomplexes. The photophysical dynamics of the CuIcomplexes are explored by time-resolved photoluminescence and optical transient absorption spectroscopies. Relative to control complexes lacking a TICT-active ligand, the lifetimes of CS states are enhanced ∼1000-fold. Further, the presence of the ortho-OMe substituent greatly enhances the lifetime of the TICT∗ state and biases the coordination environment toward CuII. The presence of CuIdecreases photoinduced degradation from 14 to <2% but does not result in significant quenching via ET. Factors affecting CS in these systems are discussed, laying the groundwork for our strategy toward solar energy conversion.

Original languageEnglish (US)
Pages (from-to)12116-12126
Number of pages11
JournalJournal of the American Chemical Society
Issue number27
StatePublished - Jul 13 2022

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Toward Improved Charge Separation through Conformational Control in Copper Coordination Complexes'. Together they form a unique fingerprint.

Cite this