Toward assessing clinical trial publications for reporting transparency

Halil Kilicoglu, Graciela Rosemblat, Linh Hoang, Sahil Wadhwa, Zeshan Peng, Mario Malički, Jodi Schneider, Gerben ter Riet

Research output: Contribution to journalArticlepeer-review


Objective: To annotate a corpus of randomized controlled trial (RCT) publications with the checklist items of CONSORT reporting guidelines and using the corpus to develop text mining methods for RCT appraisal. Methods: We annotated a corpus of 50 RCT articles at the sentence level using 37 fine-grained CONSORT checklist items. A subset (31 articles) was double-annotated and adjudicated, while 19 were annotated by a single annotator and reconciled by another. We calculated inter-annotator agreement at the article and section level using MASI (Measuring Agreement on Set-Valued Items) and at the CONSORT item level using Krippendorff's α. We experimented with two rule-based methods (phrase-based and section header-based) and two supervised learning approaches (support vector machine and BioBERT-based neural network classifiers), for recognizing 17 methodology-related items in the RCT Methods sections. Results: We created CONSORT-TM consisting of 10,709 sentences, 4,845 (45%) of which were annotated with 5,246 labels. A median of 28 CONSORT items (out of possible 37) were annotated per article. Agreement was moderate at the article and section levels (average MASI: 0.60 and 0.64, respectively). Agreement varied considerably among individual checklist items (Krippendorff's α= 0.06–0.96). The model based on BioBERT performed best overall for recognizing methodology-related items (micro-precision: 0.82, micro-recall: 0.63, micro-F1: 0.71). Combining models using majority vote and label aggregation further improved precision and recall, respectively. Conclusion: Our annotated corpus, CONSORT-TM, contains more fine-grained information than earlier RCT corpora. Low frequency of some CONSORT items made it difficult to train effective text mining models to recognize them. For the items commonly reported, CONSORT-TM can serve as a testbed for text mining methods that assess RCT transparency, rigor, and reliability, and support methods for peer review and authoring assistance. Minor modifications to the annotation scheme and a larger corpus could facilitate improved text mining models. CONSORT-TM is publicly available at

Original languageEnglish (US)
Article number103717
JournalJournal of Biomedical Informatics
StatePublished - Apr 2021


  • Corpus annotation
  • Reporting guidelines
  • Sentence classification
  • Text mining

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications


Dive into the research topics of 'Toward assessing clinical trial publications for reporting transparency'. Together they form a unique fingerprint.

Cite this