Abstract
We discuss a certain class of two-dimensional quantum systems which exhibit conventional order and topological order, as well as quantum critical points separating these phases. All of the ground-state equal-time correlators of these theories are equal to correlation functions of a local two-dimensional classical model. The critical points therefore exhibit a time-independent form of conformal invariance. These theories characterize the universality classes of two-dimensional quantum dimer models and of quantum generalizations of the eight-vertex model, as well as ℤ2 and non-abelian gauge theories. The conformal quantum critical points are relatives of the Lifshitz points of three-dimensional anisotropic classical systems such as smectic liquid crystals. In particular, the ground-state wave functional of these quantum Lifshitz points is just the statistical (Gibbs) weight of the ordinary two-dimensional free boson, the two-dimensional Gaussian model. The full phase diagram for the quantum eight-vertex model exhibits quantum critical lines with continuously varying critical exponents separating phases with long-range order from a ℤ2 deconfined topologically ordered liquid phase. We show how similar ideas also apply to a well-known field theory with non-Abelian symmetry, the strong-coupling limit of 2 + 1-dimensional Yang-Mills gauge theory with a Chern-Simons term. The ground state of this theory is relevant for recent theories of topological quantum computation.
Original language | English (US) |
---|---|
Pages (from-to) | 493-551 |
Number of pages | 59 |
Journal | Annals of Physics |
Volume | 310 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2004 |
Externally published | Yes |
ASJC Scopus subject areas
- Physics and Astronomy(all)