Tool wear monitoring for ultrasonic metal welding of lithium-ion batteries

Chenhui Shao, Tae Hyung Kim, S. Jack Hu, Jionghua Judy Jin, Jeffrey A. Abell, J. Patrick Spicer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a tool wear monitoring framework for ultrasonic metal welding which has been used for lithium-ion battery manufacturing. Tool wear has a significant impact on joining quality. In addition, tool replacement, including horns and anvils, constitutes an important part of production costs. Therefore, a tool condition monitoring (TCM) system is highly desirable for ultrasonic metal welding. However, it is very challenging to develop a TCM system due to the complexity of tool surface geometry and a lack of thorough understanding on the wear mechanism. Here, we first characterize tool wear progression by comparing surface measurements obtained at different stages of tool wear, and then develop a tool condition classification algorithm to identify the state of wear. The developed algorithm is validated using tool measurement data from a battery plant.

Original languageEnglish (US)
Title of host publicationMaterials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856833
DOIs
StatePublished - 2015
Externally publishedYes
EventASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015 - Charlotte, United States
Duration: Jun 8 2015Jun 12 2015

Publication series

NameASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
Volume2

Other

OtherASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
Country/TerritoryUnited States
CityCharlotte
Period6/8/156/12/15

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Tool wear monitoring for ultrasonic metal welding of lithium-ion batteries'. Together they form a unique fingerprint.

Cite this