Abstract

With the increasing availability of whole genome data, many species trees are being constructed from hundreds to thousands of loci. Although concatenation analysis using maximum likelihood is a standard approach for estimating species trees, it does not account for gene tree heterogeneity, which can occur due to many biological processes, such as incomplete lineage sorting. Coalescent species tree estimation methods, many of which are statistically consistent in the presence of incomplete lineage sorting, include Bayesian methods that coestimate the gene trees and the species tree, summary methods that compute the species tree by combining estimated gene trees, and site-based methods that infer the species tree from site patterns in the alignments of different loci. Due to concerns that poor quality loci will reduce the accuracy of estimated species trees, many recent phylogenomic studies have removed or filtered genes on the basis of phylogenetic signal and/or missing data prior to inferring species trees; little is known about the performance of species tree estimation methods when gene filtering is performed. We examine how incomplete lineage sorting, phylogenetic signal of individual loci, and missing data affect the absolute and the relative accuracy of species tree estimation methods and show how these properties affect methods' responses to gene filtering strategies. In particular, summary methods (ASTRAL-II, ASTRID, and MP-EST), a site-based coalescent method (SVDquartets within PAUP∗), and an unpartitioned concatenation analysis using maximum likelihood (RAxML) were evaluated on a heterogeneous collection of simulated multilocus data sets, and the following trends were observed. Filtering genes based on gene tree estimation error improved the accuracy of the summary methods when levels of incomplete lineage sorting were low to moderate but did not benefit the summary methods under higher levels of incomplete lineage sorting, unless gene tree estimation error was also extremely high (a model condition with few replicates). Neither SVDquartets nor concatenation analysis using RAxML benefited from filtering genes on the basis of gene tree estimation error. Finally, filtering genes based on missing data was either neutral (i.e., did not impact accuracy) or else reduced the accuracy of all five methods. By providing insight into the consequences of gene filtering, we offer recommendations for estimating species tree in the presence of incomplete lineage sorting and reconcile seemingly conflicting observations made in prior studies regarding the impact of gene filtering.

Original languageEnglish (US)
Pages (from-to)285-303
Number of pages19
JournalSystematic biology
Volume67
Issue number2
DOIs
StatePublished - Mar 1 2018

Fingerprint

estimation method
gene
Genes
genes
sorting
methodology
maximum likelihood analysis
loci
phylogenetics
Biological Phenomena
method
Bayes Theorem
Expressed Sequence Tags
phylogeny
Bayesian theory
biological processes

Keywords

  • Gene tree estimation error
  • missing data
  • multispecies coalescent
  • ncomplete lineage sorting
  • species tree estimation

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics

Cite this

To Include or Not to Include : The Impact of Gene Filtering on Species Tree Estimation Methods. / Molloy, Erin K.; Warnow, Tandy.

In: Systematic biology, Vol. 67, No. 2, 01.03.2018, p. 285-303.

Research output: Contribution to journalArticle

@article{da0ec4c8bac540c2880e48e4d9f72b85,
title = "To Include or Not to Include: The Impact of Gene Filtering on Species Tree Estimation Methods",
abstract = "With the increasing availability of whole genome data, many species trees are being constructed from hundreds to thousands of loci. Although concatenation analysis using maximum likelihood is a standard approach for estimating species trees, it does not account for gene tree heterogeneity, which can occur due to many biological processes, such as incomplete lineage sorting. Coalescent species tree estimation methods, many of which are statistically consistent in the presence of incomplete lineage sorting, include Bayesian methods that coestimate the gene trees and the species tree, summary methods that compute the species tree by combining estimated gene trees, and site-based methods that infer the species tree from site patterns in the alignments of different loci. Due to concerns that poor quality loci will reduce the accuracy of estimated species trees, many recent phylogenomic studies have removed or filtered genes on the basis of phylogenetic signal and/or missing data prior to inferring species trees; little is known about the performance of species tree estimation methods when gene filtering is performed. We examine how incomplete lineage sorting, phylogenetic signal of individual loci, and missing data affect the absolute and the relative accuracy of species tree estimation methods and show how these properties affect methods' responses to gene filtering strategies. In particular, summary methods (ASTRAL-II, ASTRID, and MP-EST), a site-based coalescent method (SVDquartets within PAUP∗), and an unpartitioned concatenation analysis using maximum likelihood (RAxML) were evaluated on a heterogeneous collection of simulated multilocus data sets, and the following trends were observed. Filtering genes based on gene tree estimation error improved the accuracy of the summary methods when levels of incomplete lineage sorting were low to moderate but did not benefit the summary methods under higher levels of incomplete lineage sorting, unless gene tree estimation error was also extremely high (a model condition with few replicates). Neither SVDquartets nor concatenation analysis using RAxML benefited from filtering genes on the basis of gene tree estimation error. Finally, filtering genes based on missing data was either neutral (i.e., did not impact accuracy) or else reduced the accuracy of all five methods. By providing insight into the consequences of gene filtering, we offer recommendations for estimating species tree in the presence of incomplete lineage sorting and reconcile seemingly conflicting observations made in prior studies regarding the impact of gene filtering.",
keywords = "Gene tree estimation error, missing data, multispecies coalescent, ncomplete lineage sorting, species tree estimation",
author = "Molloy, {Erin K.} and Tandy Warnow",
year = "2018",
month = "3",
day = "1",
doi = "10.1093/sysbio/syx077",
language = "English (US)",
volume = "67",
pages = "285--303",
journal = "Systematic Biology",
issn = "1063-5157",
publisher = "Oxford University Press",
number = "2",

}

TY - JOUR

T1 - To Include or Not to Include

T2 - The Impact of Gene Filtering on Species Tree Estimation Methods

AU - Molloy, Erin K.

AU - Warnow, Tandy

PY - 2018/3/1

Y1 - 2018/3/1

N2 - With the increasing availability of whole genome data, many species trees are being constructed from hundreds to thousands of loci. Although concatenation analysis using maximum likelihood is a standard approach for estimating species trees, it does not account for gene tree heterogeneity, which can occur due to many biological processes, such as incomplete lineage sorting. Coalescent species tree estimation methods, many of which are statistically consistent in the presence of incomplete lineage sorting, include Bayesian methods that coestimate the gene trees and the species tree, summary methods that compute the species tree by combining estimated gene trees, and site-based methods that infer the species tree from site patterns in the alignments of different loci. Due to concerns that poor quality loci will reduce the accuracy of estimated species trees, many recent phylogenomic studies have removed or filtered genes on the basis of phylogenetic signal and/or missing data prior to inferring species trees; little is known about the performance of species tree estimation methods when gene filtering is performed. We examine how incomplete lineage sorting, phylogenetic signal of individual loci, and missing data affect the absolute and the relative accuracy of species tree estimation methods and show how these properties affect methods' responses to gene filtering strategies. In particular, summary methods (ASTRAL-II, ASTRID, and MP-EST), a site-based coalescent method (SVDquartets within PAUP∗), and an unpartitioned concatenation analysis using maximum likelihood (RAxML) were evaluated on a heterogeneous collection of simulated multilocus data sets, and the following trends were observed. Filtering genes based on gene tree estimation error improved the accuracy of the summary methods when levels of incomplete lineage sorting were low to moderate but did not benefit the summary methods under higher levels of incomplete lineage sorting, unless gene tree estimation error was also extremely high (a model condition with few replicates). Neither SVDquartets nor concatenation analysis using RAxML benefited from filtering genes on the basis of gene tree estimation error. Finally, filtering genes based on missing data was either neutral (i.e., did not impact accuracy) or else reduced the accuracy of all five methods. By providing insight into the consequences of gene filtering, we offer recommendations for estimating species tree in the presence of incomplete lineage sorting and reconcile seemingly conflicting observations made in prior studies regarding the impact of gene filtering.

AB - With the increasing availability of whole genome data, many species trees are being constructed from hundreds to thousands of loci. Although concatenation analysis using maximum likelihood is a standard approach for estimating species trees, it does not account for gene tree heterogeneity, which can occur due to many biological processes, such as incomplete lineage sorting. Coalescent species tree estimation methods, many of which are statistically consistent in the presence of incomplete lineage sorting, include Bayesian methods that coestimate the gene trees and the species tree, summary methods that compute the species tree by combining estimated gene trees, and site-based methods that infer the species tree from site patterns in the alignments of different loci. Due to concerns that poor quality loci will reduce the accuracy of estimated species trees, many recent phylogenomic studies have removed or filtered genes on the basis of phylogenetic signal and/or missing data prior to inferring species trees; little is known about the performance of species tree estimation methods when gene filtering is performed. We examine how incomplete lineage sorting, phylogenetic signal of individual loci, and missing data affect the absolute and the relative accuracy of species tree estimation methods and show how these properties affect methods' responses to gene filtering strategies. In particular, summary methods (ASTRAL-II, ASTRID, and MP-EST), a site-based coalescent method (SVDquartets within PAUP∗), and an unpartitioned concatenation analysis using maximum likelihood (RAxML) were evaluated on a heterogeneous collection of simulated multilocus data sets, and the following trends were observed. Filtering genes based on gene tree estimation error improved the accuracy of the summary methods when levels of incomplete lineage sorting were low to moderate but did not benefit the summary methods under higher levels of incomplete lineage sorting, unless gene tree estimation error was also extremely high (a model condition with few replicates). Neither SVDquartets nor concatenation analysis using RAxML benefited from filtering genes on the basis of gene tree estimation error. Finally, filtering genes based on missing data was either neutral (i.e., did not impact accuracy) or else reduced the accuracy of all five methods. By providing insight into the consequences of gene filtering, we offer recommendations for estimating species tree in the presence of incomplete lineage sorting and reconcile seemingly conflicting observations made in prior studies regarding the impact of gene filtering.

KW - Gene tree estimation error

KW - missing data

KW - multispecies coalescent

KW - ncomplete lineage sorting

KW - species tree estimation

UR - http://www.scopus.com/inward/record.url?scp=85040777317&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85040777317&partnerID=8YFLogxK

U2 - 10.1093/sysbio/syx077

DO - 10.1093/sysbio/syx077

M3 - Article

C2 - 29029338

AN - SCOPUS:85040777317

VL - 67

SP - 285

EP - 303

JO - Systematic Biology

JF - Systematic Biology

SN - 1063-5157

IS - 2

ER -