Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling

Katerina Chatziioannou, Eric Poisson, Nicolás Yunes

Research output: Contribution to journalArticlepeer-review

Abstract

We calculate the linear vacuum perturbations of a Kerr black hole surrounded by a slowly varying external spacetime to third order in the ratio of the black-hole mass to the radius of curvature of the external spacetime. This expansion applies to two relevant physical scenarios: (i) a small Kerr black hole immersed in the gravitational field of a much larger external black hole, and (ii) a Kerr black hole moving slowly around another external black hole of comparable mass. This small-hole/slow-motion approximation allows us to parametrize the perturbation through slowly varying, time-dependent electric and magnetic tidal tensors, which then enable us to separate the Teukolsky equation and compute the Newman-Penrose scalar analytically to third order in our expansion parameter. We obtain generic expressions for the mass and angular momentum flux through the perturbed black hole horizon, as well as the rate of change of the horizon surface area, in terms of certain invariants constructed from the electric and magnetic tidal tensors. We conclude by applying these results to the second scenario described above.

Original languageEnglish (US)
Article number044022
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume87
Issue number4
DOIs
StatePublished - Feb 8 2013
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling'. Together they form a unique fingerprint.

Cite this