Background: Numerous techniques have been developed for localizing lymph nodes before surgical resection and for their histological assessment. Nondestructive high-resolution transcapsule optical imaging of lymph nodes offers the potential for in situ assessment of metastatic involvement, potentially during surgical procedures. Methods: Three-dimensional optical coherence tomography (3-D OCT) was used for imaging and assessing resected popliteal lymph nodes from a preclinical rat metastatic tumor model over a 9-day time-course study after tumor induction. The spectral-domain OCT system utilized a center wavelength of 800 nm, provided axial and transverse resolutions of 3 and 12 μm, respectively, and performed imaging at 10,000 axial scans per second. Results: OCT is capable of providing high-resolution label-free images of intact lymph node microstructure based on intrinsic optical scattering properties with penetration depths of ~1-2 mm. The results demonstrate that OCT is capable of differentiating normal, reactive, and metastatic lymph nodes based on microstructural changes. The optical scattering and structural changes revealed by OCT from day 3 to day 9 after the injection of tumor cells into the lymphatic system correlate with inflammatory and immunological changes observed in the capsule, precortical regions, follicles, and germination centers found during histopathology. Conclusions: We report for the first time a longitudinal study of 3-D transcapsule OCT imaging of intact lymph nodes demonstrating microstructural changes during metastatic infiltration. These results demonstrate the potential of OCT as a technique for intraoperative, real-time in situ 3-D optical biopsy of lymph nodes for the intraoperative staging of cancer.

Original languageEnglish (US)
Pages (from-to)3685-3693
Number of pages9
JournalAnnals of Surgical Oncology
Issue number11
StatePublished - Oct 2013

ASJC Scopus subject areas

  • Surgery
  • Oncology


Dive into the research topics of 'Three-dimensional optical coherence tomography for optical biopsy of lymph nodes and assessment of metastatic disease'. Together they form a unique fingerprint.

Cite this