TY - JOUR
T1 - Three-dimensional numerical relativity
T2 - The evolution of black holes
AU - Anninos, Peter
AU - Massó, Joan
AU - Seidel, Edward
AU - Suen, Wai Mo
AU - Towns, John
PY - 1995
Y1 - 1995
N2 - We report on a new three-dimensional (3D) numerical code designed to solve the Einstein equations for general vacuum spacetimes. This code is based on the standard 3+1 approach using Cartesian coordinates. We discuss the numerical techniques used in developing this code, and its performance on massively parallel and vector supercomputers. As a test case, we present evolutions for the first 3D black hole spacetimes. We identify a number of difficulties in evolving 3D black holes and suggest approaches to overcome them. We show how special treatment of the conformal factor can lead to more accurate evolution, and discuss techniques we developed to handle black hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole to about t=50M, where M is the black hole mass. Comparisons are made with results obtained by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also demonstrate that an "apparent horizon locking shift" can be used to prevent the development of large gradients in the metric functions that result from singularity avoiding time slicings. We compute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be conserved to within about 5% throughout the evolution with our techniques and current resolution.
AB - We report on a new three-dimensional (3D) numerical code designed to solve the Einstein equations for general vacuum spacetimes. This code is based on the standard 3+1 approach using Cartesian coordinates. We discuss the numerical techniques used in developing this code, and its performance on massively parallel and vector supercomputers. As a test case, we present evolutions for the first 3D black hole spacetimes. We identify a number of difficulties in evolving 3D black holes and suggest approaches to overcome them. We show how special treatment of the conformal factor can lead to more accurate evolution, and discuss techniques we developed to handle black hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole to about t=50M, where M is the black hole mass. Comparisons are made with results obtained by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also demonstrate that an "apparent horizon locking shift" can be used to prevent the development of large gradients in the metric functions that result from singularity avoiding time slicings. We compute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be conserved to within about 5% throughout the evolution with our techniques and current resolution.
UR - http://www.scopus.com/inward/record.url?scp=35949005569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35949005569&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.52.2059
DO - 10.1103/PhysRevD.52.2059
M3 - Article
AN - SCOPUS:35949005569
SN - 0556-2821
VL - 52
SP - 2059
EP - 2082
JO - Physical Review D
JF - Physical Review D
IS - 4
ER -