Three-dimensional laser optoacoustic and laser ultrasound imaging system for biomedical research

Sergey A. Ermilov, Richard Su, Andre Conjusteau, Tanmayi Oruganti, Kun Wang, Fatima Anis, Mark A. Anastasio, Alexander A. Oraevsky

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we introduce an improved prototype of the imaging system that combines three-dimensional optoacoustic tomography (3D-OAT) and laser ultrasound tomography slicer (2D-LUT) to obtain coregistered maps of tissue optical absorption and speed of sound (SOS). The imaging scan is performed by a 360 degree rotation of a phantom/mouse with respect to a static arc-shaped array of ultrasonic transducers. A Q-switched laser system is used to establish optoacoustic illumination pattern appropriate for deep tissue imaging with a tunable (730-840 nm) output wavelengths operated at 10 Hz pulse repetition rate. For the LUT slicer scans, the array is pivoted by 90 degrees with respect to the central transducers providing accurate registration of optoacoustic and SOS maps, the latter being reconstructed using waveform inversion with source encoding (WISE) technique. The coregistered OAT-LUT modality is validated by imaging a phantom and a live mouse. SOS maps acquired in the imaging system can be employed by an iterative optoacoustic reconstruction algorithm capable of compensating for acoustic wavefield aberrations. The most promising applications of the imaging system include 3D angiography, cancer research, and longitudinal studies of biological distributions of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, fluorophores, etc.).

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2015
EditorsAlexander A. Oraevsky, Lihong V. Wang
PublisherSPIE
ISBN (Electronic)9781628414134
DOIs
StatePublished - Jan 1 2015
Externally publishedYes
EventPhotons Plus Ultrasound: Imaging and Sensing 2015 - San Francisco, United States
Duration: Feb 8 2015Feb 10 2015

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9323
ISSN (Print)1605-7422

Other

OtherPhotons Plus Ultrasound: Imaging and Sensing 2015
CountryUnited States
CitySan Francisco
Period2/8/152/10/15

Keywords

  • Mouse imaging
  • Optical absorption
  • Photoacoustic tomography
  • Speed of sound tomography
  • Wave inversion

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Three-dimensional laser optoacoustic and laser ultrasound imaging system for biomedical research'. Together they form a unique fingerprint.

Cite this