Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation

Jonghyun Choi, Hoe Joon Kim, Michael Cai Wang, Juyoung Leem, William P. King, Sungwoo Nam

Research output: Contribution to journalArticlepeer-review

Abstract

The transfer of graphene from its growth substrate to a target substrate has been widely investigated for its decisive role in subsequent device integration and performance. Thus far, various reported methods of graphene transfer have been mostly limited to planar or curvilinear surfaces due to the challenges associated with fractures from local stress during transfer onto three-dimensional (3D) microstructured surfaces. Here, we report a robust approach to integrate graphene onto 3D microstructured surfaces while maintaining the structural integrity of graphene, where the out-of-plane dimensions of the 3D features vary from 3.5 to 50 m. We utilized three sequential steps: (1) substrate swelling, (2) shrinking, and (3) adaptation, in order to achieve damage-free, large area integration of graphene on 3D microstructures. Detailed scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical resistance measurement studies show that the amount of substrate swelling as well as the flexural rigidities of the transfer film affect the integration yield and quality of the integrated graphene. We also demonstrate the versatility of our approach by extension to a variety of 3D microstructured geometries. Lastly, we show the integration of hybrid structures of graphene decorated with gold nanoparticles onto 3D microstructure substrates, demonstrating the compatibility of our integration method with other hybrid nanomaterials. We believe that the versatile, damage-free integration method based on swelling, shrinking, and adaptation will pave the way for 3D integration of two-dimensional (2D) materials and expand potential applications of graphene and 2D materials in the future.

Original languageEnglish (US)
Pages (from-to)4525-4531
Number of pages7
JournalNano letters
Volume15
Issue number7
DOIs
StatePublished - Jul 8 2015

Keywords

  • Graphene
  • microstructured substrate
  • substrate-engineering
  • three-dimensional integration

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation'. Together they form a unique fingerprint.

Cite this