Three-dimensional, flexible graphene bioelectronics

Sunggyu Chun, Jonghyun Choi, Ali Ashraf, Sungwoo Nam

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We report 3-dimensional (3D) graphene-based biosensors fabricated via 3D transfer of monolithic graphene-graphite structures. This mechanically flexible all-carbon structure is a prospective candidate for intimate 3D interfacing with biological systems. Monolithic graphene-graphite structures were synthesized using low pressure chemical vapor deposition (LPCVD) process relying on the heterostructured metal catalyst layers. Nonplanar substrates and wet-transfer method were used with a thin Au film as a transfer layer to achieve the 3D graphene structure. Instead of the typical wet-etching method, vapor-phase etching was performed to minimize the delamination of the graphene while removing the transfer layer. We believe that the monolithic graphene-graphite synthesis combined with the conformal 3D transfer will pave the way for the 3D conformal sensing capability as well as the intracellular recording of living cells in the future.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5268-5271
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
CountryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Three-dimensional, flexible graphene bioelectronics'. Together they form a unique fingerprint.

Cite this