THIN-WALLED LAMINATED COMPOSITE CYLINDRICAL TUBES: PART III - CRITICAL SPEED ANALYSIS.

Henrique M Reis, Robert B. Goldman, Paul H. Verstrate

Research output: Contribution to journalArticlepeer-review

Abstract

A numerical procedure to evaluate the rotordynamic performance of thin-walled filamentary wound laminated composite circular cylindrical shafts of any layup is presented. The rotordynamic formulation follows Ruhl's approach modified to include a beam-type stiffness matrix that is numerically constructed from the solution of two-point boundary value problems of composite circular cylinders. Numerical results for the critical speeds and the unbalance response of a sample composite shaft are obtained and compared with predictions based on classical methods of analysis and experimental results found in the literature. It was observed that for certain layups the classical methods of analysis tend to mask fundamental characteristics that govern the rotordynamic response of composite shafts.

Original languageEnglish (US)
Pages (from-to)58-62
Number of pages5
JournalJournal of Composites Technology and Research
Volume9
Issue number2
StatePublished - Jun 1987

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry
  • Polymers and Plastics

Fingerprint Dive into the research topics of 'THIN-WALLED LAMINATED COMPOSITE CYLINDRICAL TUBES: PART III - CRITICAL SPEED ANALYSIS.'. Together they form a unique fingerprint.

Cite this