TY - JOUR
T1 - Thermodynamics in expanding shell-shaped Bose-Einstein condensates
AU - Rhyno, Brendan
AU - Lundblad, Nathan
AU - Aveline, David C.
AU - Lannert, Courtney
AU - Vishveshwara, Smitha
N1 - Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/12
Y1 - 2021/12
N2 - Inspired by investigations of Bose-Einstein condensates (BECs) produced in the Cold Atom Laboratory (CAL) aboard the International Space Station, we present a study of thermodynamic properties of shell-shaped BECs. Within the context of a spherically symmetric "bubble trap"potential, we study the evolution of the system from small filled spheres to hollow, large, thin shells via the tuning of trap parameters. We analyze the bubble trap spectrum and states and track the distinct changes in spectra between radial and angular modes across the evolution. This separation of the excitation spectrum provides a basis for quantifying dimensional crossover to quasi-2D physics at a given temperature. Using the spectral data, for a range of trap parameters, we compute the critical temperature for a fixed number of particles to form a BEC. For a set of initial temperatures, we also evaluate the change in temperature that would occur in adiabatic expansion from small filled sphere to large thin shell were the trap to be dynamically tuned. We show that the system cools during this expansion but that the decrease in critical temperature occurs more rapidly, thus resulting in depletion of any initial condensate. We contrast our spectral methods with standard semiclassical treatments, which we find must be used with caution in the thin-shell limit. With regard to interactions, using energetic considerations and corroborated through Bogoliubov treatments, we demonstrate that they would be less important for thin shells due to reduced density but vortex physics would become more predominant. Finally, we apply our treatments to traps that realistically model CAL experiments and borrow from the thermodynamic insights found in the idealized bubble case during adiabatic expansion.
AB - Inspired by investigations of Bose-Einstein condensates (BECs) produced in the Cold Atom Laboratory (CAL) aboard the International Space Station, we present a study of thermodynamic properties of shell-shaped BECs. Within the context of a spherically symmetric "bubble trap"potential, we study the evolution of the system from small filled spheres to hollow, large, thin shells via the tuning of trap parameters. We analyze the bubble trap spectrum and states and track the distinct changes in spectra between radial and angular modes across the evolution. This separation of the excitation spectrum provides a basis for quantifying dimensional crossover to quasi-2D physics at a given temperature. Using the spectral data, for a range of trap parameters, we compute the critical temperature for a fixed number of particles to form a BEC. For a set of initial temperatures, we also evaluate the change in temperature that would occur in adiabatic expansion from small filled sphere to large thin shell were the trap to be dynamically tuned. We show that the system cools during this expansion but that the decrease in critical temperature occurs more rapidly, thus resulting in depletion of any initial condensate. We contrast our spectral methods with standard semiclassical treatments, which we find must be used with caution in the thin-shell limit. With regard to interactions, using energetic considerations and corroborated through Bogoliubov treatments, we demonstrate that they would be less important for thin shells due to reduced density but vortex physics would become more predominant. Finally, we apply our treatments to traps that realistically model CAL experiments and borrow from the thermodynamic insights found in the idealized bubble case during adiabatic expansion.
UR - http://www.scopus.com/inward/record.url?scp=85121866109&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121866109&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.104.063310
DO - 10.1103/PhysRevA.104.063310
M3 - Article
AN - SCOPUS:85121866109
SN - 2469-9926
VL - 104
JO - Physical Review A
JF - Physical Review A
IS - 6
M1 - 063310
ER -